Abstract

In this paper, first-passage problem of a class of internally resonant quasi-integrable Hamiltonian system under wide-band stochastic excitations is studied theoretically. By using stochastic averaging method, the equations of motion of the original internally resonant Hamiltonian system are reduced to a set of averaged Itô stochastic differential equations. The backward Kolmogorov equation governing the conditional reliability function and the Pontryagin equation governing the mean first-passage time are established under appropriate boundary and (or) initial conditions. An example is given to show the accuracy of the theoretical method. Numerical solutions of high-dimensional backward Kolmogorov and Pontryagin equation are obtained by finite difference. All theoretical results are verified by Monte Carlo simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call