Abstract
In this paper, the first-passage failure of stochastic dynamical systems with fractional derivative and power-form restoring force subjected to Gaussian white-noise excitation is investigated. With application of the stochastic averaging method of quasi-Hamiltonian system, the system energy process will converge weakly to an Itô differential equation. After that, Backward Kolmogorov (BK) equation associated with conditional reliability function and Generalized Pontryagin (GP) equation associated with statistical moments of first-passage time are constructed and solved. Particularly, the influence on reliability caused by the order of fractional derivative and the power of restoring force are also examined, respectively. Numerical results show that reliability function is decreased with respect to the time. Lower power of restoring force may lead the system to more unstable evolution and lead first passage easy to happen. Besides, more viscous material described by fractional derivative may have higher reliability. Moreover, the analytical results are all in good agreement with Monte-Carlo data.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have