Abstract

The first results of edge-localized mode (ELM) pacing using small spherical lithium granules injected mechanically into H-mode discharges are reported. Triggering of ELMs was accomplished using a simple rotating impeller to inject sub-millimetre size granules at speeds of a few tens of meters per second into the outer midplane of the EAST fusion device. During the injection phase, ELMs were triggered with near 100% efficiency and the amplitude of the induced ELMs as measured by Dα was clearly reduced compared to contemporaneous naturally occurring ELMs. In addition, a wide range of granule penetration depths was observed. Moreover, a substantial fraction of the injected granules appeared to penetrate up to 50% deeper than the 3 cm nominal EAST H-mode pedestal width. The observed granule penetration was, however, less deep than suggested by ablation modelling carried out after the experiment. The observation that ELMs can be triggered using the injection of something other than frozen hydrogenic pellets allows for the contemplation of lithium or beryllium-based ELM pace-making on future fusion devices. This change in triggering paradigm would allow for the decoupling of the ELM-triggering process from the plasma-fuelling process which is currently a limitation on the performance of hydrogen-based ELM mitigation by injected pellets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.