Abstract

Background Paspalum plicatulum is a perennial rhizomatous grass with natural diploid and polyploid cytotypes. It is a member of Plicatula, which has historically been recognized as a highly complex group containing species of ecological, ornamental and forage importance. The complex nature of the P. plicatulum genome makes it a challenging species for genetic research. This study aimed to develop and characterize microsatellite molecular markers in P. plicatulum and to evaluate their transferability to other Plicatula group species.FindingsMicrosatellite sequences were identified from three enriched libraries from P. plicatulum. Specific primers were designed, and 25 displayed polymorphism when screened across 48 polyploid Paspalum spp. genotypes. The number of bands per locus ranged from 2 to 17, with a mean of 8.65. Private bands for each species were identified; the highest number of private bands was observed for P. plicatulum in 52% of the loci analyzed. The mean polymorphism information content of all loci was 0.69, and the mean discriminatory power was 0.82. Microsatellite markers were satisfactorily cross-amplified for the eight tested Plicatula-group Paspalum species, with P. atratum exhibiting the highest transferability rate (89.86%). STRUCTURE and Discriminant Analysis of Principal Components separated accessions into three groups but did not reveal separation of the accessions according to species.ConclusionsThis study describes the first microsatellite markers in P. plicatulum, which are polymorphic, efficient for the detection and quantification of genetic variation, and show high transferability into other species of the Plicatula group. This set of markers can be used in future genetic and molecular studies necessary for the proper development of conservation and breeding programs. Private bands within the markers can be used to assist in species identification.Electronic supplementary materialThe online version of this article (doi:10.1186/s13104-016-2312-z) contains supplementary material, which is available to authorized users.

Highlights

  • Paspalum plicatulum is a perennial rhizomatous grass with natural diploid and polyploid cytotypes

  • This study describes the first microsatellite markers in P. plicatulum, which are polymorphic, efficient for the detection and quantification of genetic variation, and show high transferability into other species of the Plicatula group

  • Private bands within the markers can be used to assist in species identification

Read more

Summary

Introduction

Paspalum plicatulum is a perennial rhizomatous grass with natural diploid and polyploid cytotypes It is a member of Plicatula, which has historically been recognized as a highly complex group containing species of ecological, ornamental and forage importance. Among the Paspalum species, our efforts are dedicated to the study of Paspalum plicatulum Michx., a perennial rhizomatous grass with natural diploid and polyploid cytotypes [12]. This grass originated in Brazil and is widely distributed from the southern United States. Oliveira et al BMC Res Notes (2016) 9:511 to southern Argentina and Western India This species has ecological, ornamental and forage importance [13] and is known as “pasto negro” in Brazil as it is generally used in pastures. Paspalum plicatulum is member of the Plicatula group, which represents species that occur throughout the Brazilian territory with wide morphological variation [14]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call