Abstract

BackgroundEnset (Ensete ventricosum (Welw.) Cheesman; Musaceae) is a multipurpose drought-tolerant food security crop with high conservation and improvement concern in Ethiopia, where it supplements the human calorie requirements of around 20 million people. The crop also has an enormous potential in other regions of Sub-Saharan Africa, where it is known only as a wild plant. Despite its potential, genetic and genomic studies supporting breeding programs and conservation efforts are very limited. Molecular methods would substantially improve current conventional approaches. Here we report the development of the first set of SSR markers from enset, their cross-transferability to Musa spp., and their application in genetic diversity, relationship and structure assessments in wild and cultivated enset germplasm.ResultsSSR markers specific to E. ventricosum were developed through pyrosequencing of an enriched genomic library. Primer pairs were designed for 217 microsatellites with a repeat size > 20 bp from 900 candidates. Primers were validated in parallel by in silico and in vitro PCR approaches. A total of 67 primer pairs successfully amplified specific loci and 59 showed polymorphism. A subset of 34 polymorphic SSR markers were used to study 70 both wild and cultivated enset accessions. A large number of alleles were detected along with a moderate to high level of genetic diversity. AMOVA revealed that intra-population allelic variations contributed more to genetic diversity than inter-population variations. UPGMA based phylogenetic analysis and Discriminant Analysis of Principal Components show that wild enset is clearly separated from cultivated enset and is more closely related to the out-group Musa spp. No cluster pattern associated with the geographical regions, where this crop is grown, was observed for enset landraces. Our results reaffirm the long tradition of extensive seed-sucker exchange between enset cultivating communities in Southern Ethiopia.ConclusionThe first set of genomic SSR markers were developed in enset. A large proportion of these markers were polymorphic and some were also transferable to related species of the genus Musa. This study demonstrated the usefulness of the markers in assessing genetic diversity and structure in enset germplasm, and provides potentially useful information for developing conservation and breeding strategies in enset.Electronic supplementary materialThe online version of this article (doi:10.1186/s12863-015-0250-8) contains supplementary material, which is available to authorized users.

Highlights

  • Enset (Ensete ventricosum (Welw.) Cheesman; Musaceae) is a multipurpose drought-tolerant food security crop with high conservation and improvement concern in Ethiopia, where it supplements the human calorie requirements of around 20 million people

  • We report on the development of the first set of Simple Sequence Repeats (SSR) markers from E. ventricosum using an next generation sequencing (NGS) approach, on their cross-genus transferability to related taxa, and their application in assessing intra-specific genetic diversity and relationships in wild and cultivated enset accessions

  • Wild enset is represented in our study by six individuals, Erpha1 to Erpha6, all originally collected from the Dawro Zone where they are locally termed as Erpha

Read more

Summary

Introduction

Enset (Ensete ventricosum (Welw.) Cheesman; Musaceae) is a multipurpose drought-tolerant food security crop with high conservation and improvement concern in Ethiopia, where it supplements the human calorie requirements of around 20 million people. The crop has an enormous potential in other regions of Sub-Saharan Africa, where it is known only as a wild plant. Enset (Ensete ventricosum (Welw.) Cheesman), sometimes known as false-banana, is a herbaceous allogamous perennial crop native to Ethiopia and distributed in many parts of Sub-Saharan Africa [1,2,3]. Enset has an enormous potential as a food security crop that can be extended to other regions of tropical Africa, where it is known only as a wild plant [2]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call