Abstract
Recently, we have generalized the Bekenstein-Hawking entropy formula for black holes embedded in expanding Friedmann universes. In this letter, we begin the study of this new formula to obtain the first law of thermodynamics for dynamical apparent horizons. In this regard we obtain a generalized expression for the internal energy $U$ together with a distinction between the dynamical temperature $T_D$ of apparent horizons and the related one due to thermodynamics formulas. Remarkable, when the expression for $U$ is applied to the apparent horizon of the universe, we found that this internal energy is a constant of motion. Our calculations thus show that the total energy of our spatially flat universe including the gravitational contribution, when calculated at the apparent horizon, is an universal constant that can be set to zero from simple dimensional considerations. This strongly support the holographic principle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.