Abstract
Objectives:To assess the in vivo hemodynamic effects on the pressure overloaded right ventricle of RAS-Q® technology, the world’s first gas exchanger with a fully integrated compliance.Methods:In six acute in vivo trials RAS-Q was implanted in sheep between the pulmonary artery and left atrium. Right ventricular pressure overload was induced by pulmonary artery banding. Pressures and flows were recorded in baseline, moderate and severe pulmonary hypertension conditions. In one trial, RAS-Q was benchmarked against the pediatric Quadrox-i®.Results:With 1.00 and 1.17 L/min, RAS-Q delivered 31% and 39% of the total cardiac output in moderate and severe pulmonary hypertension, respectively. Pulmonary artery pressures and mean pulmonary artery pressure/mean arterial blood pressure ratio successfully decreased, implying a successful right ventricular unloading. Cardiac output was restored to normal levels in both pulmonary hypertension conditions. With both devices in parallel, RAS-Q provided three times higher flow rates and a 10 times higher pressure relief, compared to the pediatric Quadrox-i.Conclusion:A gas exchanger with a fully integrated compliance better unloads the right ventricle compared to a non-compliant gas exchanger and it can restore cardiac output to normal levels in cases of severe pulmonary hypertension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.