Abstract

Emissions of selected organic substances from a hypothetical combined sewer system are calculated by pollution load simulation. The results are subsequently discussed. First, representative concentrations of chemical oxygen demand (COD), ammonium (NH4-N) and eight selected organics (polycyclic aromatic hydrocarbons (PAH), isoproturone, Di(2-ethylhexyl)phthalate (DEHP), ibuprofen, 17-ß-estradiol (E2), 17-a-ethinylestradiol (EE2), ethyl-enediamine tetraacetic acid (EDTA), nitrilo triaceticacid (NTA)) in dry weather flow, surface runoff and effluent of WWTP in combined sewer systems are stated based on a literature survey. The second part of the paper presents pollution load simulations and first calculations of possible dis-tributions of organics in combined sewer systems for a hypothetical catchment. Different scenarios of annual discharge loads of main emission matrices of the catchment (waste water treatment plant (WWTP) effluent and combined sewer overflow (CSO)) are compared to determine significant dis-charge points. The results of the pollution load simulations show that generally discharges from the WWTP dominate the total emissions of combined sewer systems. Nevertheless, emissions from CSOs are not negligible in some cases (e.g. for estradiol). In summary, the results give first indications about possible strategies to reduce pollutant emissions from combined sewer systems. The paper also formulates recommendations for the selected organic compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.