Abstract

Gamma-ray astronomy has become one of the main experimental ways to test the modified dispersion relations (MDRs) of photons in vacuum, obtained in some attempts to formulate a theory of quantum gravity. The MDRs in use imply time delays that depend on the energy and that increase with distance following some function of redshift. The use of transient, or variable, distant and highly energetic sources already allows us to set stringent limits on the energy scale related to this phenomenon, usually thought to be of the order of the Planck energy, but robust conclusions on the existence of MDR-related propagation effects still require the analysis of a large population of sources. In order to gather the biggest sample of sources possible for MDR searches at teraelectronvolt energies, the H.E.S.S., MAGIC, and VERITAS collaborations enacted a joint task force to combine all their relevant data to constrain the quantum gravity energy scale. In the present article, the likelihood method used to combine the data and provide a common limit is described in detail and tested through simulations of recorded data sets for a gamma-ray burst, three flaring active galactic nuclei, and two pulsars. Statistical and systematic errors are assessed and included in the likelihood as nuisance parameters. In addition, a comparison of two different formalisms for distance dependence of the time lags is performed for the first time. In a second article, to appear later, the method will be applied to all relevant data from the three experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.