Abstract
Abstract Astrophysical observations provide a unique opportunity to test possible signatures of Lorentz invariance violation (LIV), due to the high energies and long distances involved. In quantum theory of gravity, one may expect the modification of the dispersion relation between energy and momentum for photons, which can be probed with the time lag (the arrival time delay between light curves in different energy bands) of gamma-ray bursts (GRBs). In this paper, by using the detailed time delay measurements of GRB 160625B at different energy bands, as well as 23 time delay GRBs covering the redshift range of z = 0.168–2.5 (which were measured at different energy channels from the light curves), we propose an improved model-independent method (based on the newly compiled sample of H(z) measurements) to probe the energy-dependent velocity due to the modified dispersion relation for photons. In the framework of a more complex and reasonable theoretical expression to describe the time delays, our results imply that the intrinsic time lags can be better described with more GRB time delay data. More importantly, through direct fitting of the time delay measurements of a sample of GRBs, our limit on the LIV energy scale is comparable to that with unknown constant for the intrinsic time lag, much lower than the Planck energy scale in both linear LIV and quadratic LIV cases.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.