Abstract
We describe the distribution of the first finite number of eigenvalues in a newly-forming band of the spectrum of the random Hermitian matrix model. The method is rigorously based on the Riemann–Hilbert analysis of the corresponding orthogonal polynomials. We provide an analysis with an error term of order N −2γ where 1/γ=2ν+2 is the exponent of non-regularity of the effective potential, thus improving even in the usual case the analysis of the pertinent literature. The behavior of the first finite number of zeroes (eigenvalues) appearing in the new band is analyzed and connected with the location of the zeroes of certain Freud polynomials. In general, all these newborn zeroes approach the point of nonregularity at the rate N −γ , whereas one (a stray zero) lags behind at a slower rate of approach. The kernels for the correlator functions in the scaling coordinate near the emerging band are provided together with the subleading term. In particular, the transition between K and K+1 eigenvalues is analyzed in detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.