Abstract

We describe the spectral statistics of the first finite number of eigenvalues in a newly-forming band on the hard-edge of the spectrum of a random Hermitean matrix model, a phenomenon also known as the “birth of a cut” near a hard-edge. It is found that in a suitable scaling regime, they are described by the same spectral statistics of a finite-size Laguerre-type matrix model. The method is rigorously based on the Riemann–Hilbert analysis of the corresponding orthogonal polynomials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.