Abstract

Nitrogen oxides (NOx, including NO and NO2) play an important role in the formation of atmospheric particles. Thus, NOx emission reduction is critical for improving air quality, especially in severely air-polluted regions (e.g., North China). In this study, the source of NOx was investigated by the isotopic composition (δ15N) of particulate nitrate (p-NO3-) at Beihuangcheng Island (BH), a regional background site in North China. It was found that the δ15N-NO3- (n = 120) values varied between -1.7‰ and +24.0‰ and the δ18O-NO3- values ranged from 49.4‰ to 103.9‰. On the basis of the Bayesian mixing model, 27.78 ± 8.89%, 36.53 ± 6.66%, 22.01 ± 6.92%, and 13.68 ± 3.16% of annual NOx could be attributed to biomass burning, coal combustion, mobile sources, and biogenic soil emissions, respectively. Seasonally, the four sources were similar in spring and fall. Biogenic soil emissions were augmented in summer in association with the hot and rainy weather. Coal combustion increased significantly in winter with other sources showing an obvious decline. This study confirmed that isotope-modeling by δ15N-NO3- is a promising tool for partitioning NOx sources and provides guidance to policymakers with regard to options for NOx reduction in North China.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.