Abstract

Multiobjective optimization is a useful mathematical model in order to investigate real-world problems with conflicting objectives, arising from economics, engineering, and human decision making. In this paper, a convex composite multiobjective optimization problem, subject to a closed convex constraint set, is studied. New first-order optimality conditions for a weakly efficient solution of the convex composite multiobjective optimization problem are established via scalarization. These conditions are then extended to derive second-order optimality conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call