Abstract
The phase field crystal (PFC) model was extended to the modified phase field crystal (MPFC) model, which is a sixth-order nonlinear damped wave equation, to include not only diffusive dynamics but also elastic interactions. In this paper, we present temporally first- and second-order accurate methods for the MPFC equation, which are based on an appropriate splitting of the energy for the PFC equation. And we use the Fourier spectral method for the spatial discretization. The first- and second-order methods are shown analytically to be unconditionally stable with respect to the energy and pseudoenergy of the MPFC equation, respectively. Numerical experiments are presented demonstrating the accuracy and energy stability of the proposed methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.