Abstract

We have investigated the transport properties of electrically and thermally excited spin currents in a lateral spin valve consisting of a spin injector and detector with a middle ferromagnetic wire by detecting the first- and second-harmonic voltages. The first-harmonic spin signal was significantly suppressed by the middle ferromagnetic wire because of the spin absorption effect. On the other hand, in the second-harmonic signal, a small signal related to the middle ferromagnetic wire was observed in addition to a conventional spin signal with a reduced magnitude. This indicates that the additional ferromagnetic wire acts not only as the spin absorber but also as another spin injector under thermal spin injection, because the heat current caused by direct spin injection propagates to the middle ferromagnetic wire and creates another temperature gradient. By using this effect, we show that the magnetization direction of a ferromagnetic nanodot embedded in a nonmagnetic Cu wire becomes measurable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.