Abstract

Australia has committed to reducing its greenhouse gas emissions in a manner consistent with limiting anthropogenic climate change to no more than 2 degrees Celsius. One of the ways in which this commitment is being realised is through a shift towards variable renewable energy (VRE) within Australia’s National Electricity Market (NEM). Substituting existing dispatchable thermal plant with VRE requires consideration of long-term energy resource adequacy given the unpredictability of solar and wind resources. While pumped hydro and battery storage are key technologies for addressing short-term mismatches between resource availability and demand, they may be unable to cost effectively address ‘energy droughts’. In this article, we present a time sequential solver model of the NEM and an optimal firming technology plant mix to allow the system to be supplied by 100% VRE. Our conclusion is that some form of fuel-based technology (most likely hydrogen) will probably be required. This has important implications for Australian energy policy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call