Abstract
Fireworks algorithm is a novel swarm intelligence algorithm for solving optimization problems - the latest versions include the adaptive fireworks algorithm and the dynamic fireworks algorithm. However, the mutation operator in the former algorithm was ineffective, whereas there was no mutation operator available in the latter algorithm. In this paper, a mutation operator is proposed, dubbed as the covariance mutation (CM) operator. The CM operator utilizes the information of the sparks with better fitness values to generate potential sparks for finding the optima of functions with higher possibility. Therefore, we proposed the fireworks algorithm with covariance mutation (FWACM) and compared it with the most advanced fireworks algorithms. The experimental results show that FWACM is a significant improvement for fireworks algorithms.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have