Abstract

Biomolecular condensates form via phase transitions of condensate-specific biomacromolecules. Intrinsically disordered regions featuring the appropriate sequence grammars can contribute via homotypic and heterotypic interactions to the driving forces for phase separation of multivalent proteins. Experiments and computations have matured to the point where the concentrations of coexisting dense and dilute phases can be measured or computed for individual intrinsically disordered regions in complex milieus. For a macromolecule such as a disordered protein in a solvent, the locus of points that connects concentrations of the two coexisting phases defines a phase boundary, or binodal. Often, only a few points along the binodal are accessible via measurements. In such cases, and for quantitative and comparative analysis of parameters that describe the driving forces for phase separation, it is useful to fit measured or computed binodals to mean-field free energies for polymer solutions. The nonlinearity of the underlying free energy functions makes it challenging to put mean-field theories into practice. Here, we present FIREBALL, a suite of computational tools designed to enable efficient construction, analysis, and fitting to experimental or computed data of binodals. We show that depending on the theory being used, one can also extract information regarding coil-to-globule transitions of individual macromolecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.