Abstract

Plant species with fire-triggered germination are common in many fire-prone ecosystems. For such plants, fire timing in relation to the timing of reproduction may strongly influence post-fire population regeneration if: (a) flowering occurs infrequently (e.g. plants are mast seeders); and (b) seed survival rates are low and input from the current year's flowering therefore contributes a large proportion of the viable dormant seedbank. The role of fire timing in relation to masting as a driver of post-fire recruitment has rarely been examined directly, so this study tested the hypothesis that fires shortly after masting trigger increased recruitment of the obligate-seeding arid zone spinifex, Triodia pungens R. Br., an iteroparous masting grass with smoke-cued germination. Phenological monitoring of T. pungens was conducted over 5 years, while a longitudinal seedbank study assessed the influence of seeding events on soil-stored seedbank dynamics. Concurrently, a fire experiment with randomized blocking was undertaken to test whether T. pungens hummocks burnt shortly after masting have greater post-fire recruitment than hummocks burnt when there has not been recent input of seeds. Triodia pungens flowered in all years, though most flowerings were characterized by high rates of flower abortion. A mast flowering with high seed set in 2012 triggered approx. 200-fold increases in seedbank densities, and seedbank densities remained elevated for 24 months after this event. The fire experiment showed significantly higher recruitment around hummocks burnt 6 months after the 2012 mast event than around hummocks that were burnt but prevented from masting by having inflorescences clipped. Fires shortly after masting trigger mass recruitment in T. pungens because such fires synchronize an appropriate germination cue (smoke) with periods when seedbank densities are elevated. Interactions between natural fire regimes, seedbank dynamics and fire management prescriptions must be considered carefully when managing fire-sensitive masting plants such as T. pungens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.