Abstract

AbstractFour types of magnesium hydroxide with different particle and crystallite sizes and different degrees of agglomeration were added at amounts up to 60% by weight to polypropylene to obtain a series of composites. The burning characteristics, tensile yield strength, flexural modulus, notched Izod impact strength, and melt flow index of the resulting composites were measured. Magnesium hydroxide coated with sodium stearate was found to give an increased melt flow index and impact strength to the composites as compared to values obtained with uncoated magnesium hydroxide. Incorporation of not less than about 57% by weight of magnesium hydroxide made the composite nonflammable, but at the same time considerably reduced its impact, flexural, and tensile yield strengths. As the amount of magnesium hydroxide filler was increased, the tensile yield strength and flexural strength of the composite proportionally decreased while the flexural modulus increased. The impact strength reached a maximum value when the amount of incorporation was 30% by weight. The lower the degree of agglomeration of the magnesium hydroxide filler and the greater the crystallite size within the range to about 2μm, the better were the mechanical properties of the composite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.