Abstract
The fire resistance of reinforced concrete (RC) beams strengthened with externally bonded reinforcement carbon fibre-reinforced polymers (EBR CFRP) depends on the load level and degree of strengthening. Design guides for this type of structure recommend strengthening limits to prevent collapse of the structure due to vandalism, damage or fire. In practice, however, it is not uncommon to exceed the proposed limits. This necessitates protection of the CFRP adhesive against high temperatures, namely glass transition temperature levels. This paper presents the results of 10 full-scale experimental fire resistance tests of reinforced concrete beams with EBR CFRP strengthening, with and without fire protection and under various load levels including full utilisation. It was demonstrated that in cases where CFRP strengthening was not needed to carry load in an accidental fire scenario, test specimens with and without it achieved the same fire resistance. It was also proven that in cases where CFRP failure influenced the failure of the entire beam, fire protection was crucial for maintaining the beam's load-bearing capacity and its thickness had to be substantial. A fire resistance rating of over 4 h was achieved, nevertheless.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.