Abstract

Due to the complex effects of combined loadings on complete steel structures, the combined effects of high-velocity projectile impact and heat radiation due to a pool-fire on a vertical Q345 steel tank have not been generally considered. In this study, a consecutive coupling approach is established. The combined effects of projectile perforation and heat radiation on the failure modes and fire resistance of a vertical steel tank are investigated. Additionally, the effects of the projectile size, projectile shape, and separation distance are analyzed. The results indicate that compared with a fixed-roof tank without impact, the perforation results in stress concentrations in the plastic deformation zone. The stress level of the perforated tank is higher, and the fire resistance of the perforated tank is lower. Additionally, as the perforation size increases, the stress level triggering the thermal buckling of the perforated tank decreases outside of the plastic deformation zone. Additionally, the fire resistance decreases. Moreover, as the separation distance decreases, the stress level of the cylindrical shell increases. The fire resistance of the perforated tank decreases dramatically. By understanding the failure mode, this study is able to suggest fire and explosion protection measures in petrochemical industries to decrease or eliminate the domino effect risk and incident damage. Additionally, the fire resistance data can help improve guidelines and understanding for fire and rescue services, which would undoubtedly play a vital part in emergency response and rescue, and enhance the process safety level overall.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.