Abstract
N6 -methyladenosine (m6 A) is an mRNA modification widely found in eukaryotes and plays a crucial role in plant development and stress responses. FIONA1 (FIO1) is a recently identified m6 A methyltransferase that regulates Arabidopsis (Arabidopsis thaliana) floral transition; however, its role in stress response remains unknown. In this study, we demonstrate that FIO1-mediated m6 A methylation plays a vital role in salt stress response in Arabidopsis. The loss-of-function fio1 mutant was sensitive to salt stress. Importantly, the complementation lines expressing the wild-type FIO1 exhibited the wild-type phenotype, whereas the complementation lines expressing the mutant FIO1m , in which two critical amino acid residues essential for methyltransferase activity were mutated, did not recover the wild-type phenotype under salt stress, indicating that the salt sensitivity is associated with FIO1 methyltransferase activity. Furthermore, FIO1-mediated m6 A methylation regulated ROS production and affected the transcript level of several salt stress-responsive genes via modulating their mRNA stability in an m6 A-dependent manner in response to salt stress. Importantly, FIO1 is associated with salt stress response by specifically targeting and differentially modulating several salt stress-responsive genes compared with other m6 A writer. Collectively, our findings highlight the molecular mechanism of FIO1-mediated m6 A methylation in the salt stress adaptation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.