Abstract
A Finsler metric on a manifold M with its flag curvature K is said to be almost isotropic flag curvature if K = 3ċ + σ where σ and c are scalar functions on M. In this paper, we establish the intrinsic relation between scalar functions c(x) and σ(x). More general, by invoking the Ricci identities for a one form, we investigate Finsler metric of weakly isotropic flag curvature K = 3θ/F + σ and show that F has constant flag curvature if θ is horizontally parallel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.