Abstract
The relaxed and unrelaxed formation energies of neutral antisites and interstitial defects in InP are calculated using ab initio density functional theory and simple cubic supercells of up to 512 atoms. The finite size errors in the formation energies of all the neutral defects arising from the supercell approximation are examined and corrected for using finite size scaling methods, which are shown to be a very promising approach to the problem. Elastic errors scale linearly, whilst the errors arising from charge multipole interactions between the defect and its images in the periodic boundary conditions have a linear plus a higher order term, for which a cubic provides the best fit. These latter errors are shown to be significant even for neutral defects. Instances are also presented where even the 512 atom supercell is not sufficiently converged. Instead, physically relevant results can be obtained only by finite size scaling the results of calculations in several supercells, up to and including the 512 atom cell and in extreme cases possibly even including the 1000 atom supercell.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.