Abstract

A new mechanism for the creation of structures in two-dimensional turbulence is investigated. The forced Navier-Stokes equations are solved numerically in a periodic square in the limit of zero viscosity. The force is a white-in-time random noise acting in a narrow band of high wavenumbers. The inverse-cascade process and the presence of the boundary lead ultimately to a pile-up of energy in the lowest wavenumber (Bose condensation). In the asymptotic limit where the enstrophy cascade range is negligible, Bose condensation is solely responsible for the generation of coherent vortices and intermittency in the system. We present the evolution of the velocity and vorticity fields through the later stages of the condensate state, and explore the possible implications for atmospheric turbulence constrained by the periodic domain about the earth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call