Abstract
Dyson demonstrated an equivalence between infinite-range Coulomb gas models and classical random matrix ensembles for the study of eigenvalue statistics. We introduce finite-range Coulomb gas (FRCG) models via a Brownian matrix process, and study them analytically and by Monte Carlo simulations. These models yield new universality classes, and provide a theoretical framework for the study of banded random matrices (BRMs) and quantum kicked rotors (QKRs). We demonstrate that, for a BRM of bandwidth b and a QKR of chaos parameter α, the appropriate FRCG model has the effective range d=b^{2}/N=α^{2}/N, for large N matrix dimensionality. As d increases, there is a transition from Poisson to classical random matrix statistics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.