Abstract
Dyson has shown an equivalence between infinite-range Coulomb gas models and classical random matrix ensembles for the study of eigenvalue statistics. In this paper, we introduce finite-range Coulomb gas models as a generalization of the Dyson models with a finite range of eigenvalue interactions. As the range of interaction increases, there is a transition from Poisson statistics to classical random matrix statistics. These models yield distinct universality classes of random matrix ensembles. They also provide a theoretical framework to study banded random matrices, and dynamical systems the matrix representation of which can be written in the form of banded matrices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.