Abstract
For [Formula: see text], let [Formula: see text] be the dual of the Radford algebra of dimension [Formula: see text]. We present new finite-dimensional Nichols algebras arising from the study of simple Yetter–Drinfeld modules over [Formula: see text]. Along the way, we describe the simple objects in [Formula: see text] and their projective envelopes. Then we determine those simple modules that give rise to finite-dimensional Nichols algebras for the case [Formula: see text]. There are 18 possible cases. We present by generators and relations, the corresponding Nichols algebras on five of these eighteen cases. As an application, we characterize finite-dimensional Nichols algebras over indecomposable modules for [Formula: see text] and [Formula: see text], [Formula: see text], which recovers some results of the second and third author in the former case, and of Xiong in the latter.Cualquier destino, por largo y complicado que sea, consta en realidad de un solo momento: el momento en que el hombre sabe para siempre quién es.Jorge Luis Borges
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have