Abstract

Monopole acoustic logs in a homogeneous fluid-saturated porous formation can be simulated by the real-axis integration (RAI) method to analytically solve Biot's equations [(1956a) J. Acoust. Soc. Am. 28, 168-178; (1956b) J. Acoust. Soc. Am. 28, 179-191; (1962) J. Appl. Phys. 33, 1482-1498], which govern the wave propagation in poro-elastic media. Such analytical solution generally is impossible for horizontally stratified formations which are common in reality. In this paper, a velocity-stress finite-difference time-domain (FDTD) algorithm is proposed to solve the problem. This algorithm considers both the low-frequency viscous force and the high-frequency inertial force in poro-elastic media, extending its application to a wider frequency range compared to existing algorithms which are only valid in the low-frequency limit. The perfectly matched layer (PML) is applied as an absorbing boundary condition to truncate the computational region. A PML technique without splitting the fields is extended to the poro-elastic wave problem. The FDTD algorithm is validated by comparisons against the RAI method in a variety of formations with different velocities and permeabilities. The acoustic logs in a horizontally stratified porous formation are simulated with the proposed FDTD algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.