Abstract

A finite volume model for unsteady, two-dimensional, shallow water flow is developed and applied to simulate the advance and infiltration of an irrigation wave in two-dimensional basins of complex topography. The fluxes are computed with Roe's approximate Riemann solver and the monotone upstream scheme for conservation laws is used in conjunction with predictor-corrector time-stepping to provide a second-order accurate solution. Flux-limiting is implemented to eliminate spurious oscillations and the model incorporates an efficient and robust scheme to capture the wetting and drying of the soil. Model predictions are compared with experimental data for one- and two-dimensional problems involving rough, impermeable, and permeable beds, including a poorly leveled basin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call