Abstract

This article is devoted to investigating finite-time synchronization (FTS) for coupled neural networks (CNNs) with time-varying delays and Markovian jumping topologies by using an intermittent quantized controller. Due to the intermittent property, it is very hard to surmount the effects of time delays and ascertain the settling time. A new lemma with novel finite-time stability inequality is developed first. Then, by constructing a new Lyapunov functional and utilizing linear programming (LP) method, several sufficient conditions are obtained to assure that the Markovian CNNs achieve synchronization with an isolated node in a settling time that relies on the initial values of considered systems, the width of control and rest intervals, and the time delays. The control gains are designed by solving the LP. Moreover, an optimal algorithm is given to enhance the accuracy in estimating the settling time. Finally, a numerical example is provided to show the merits and correctness of the theoretical analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call