Abstract

This paper concerns the problem of finite-time synchronization for a class of complex-valued neural networks (CVNNs) with both time-varying and infinite-time distributed delays (mixed delays). Both the driving and response CVNNs are disturbed by external uncertain perturbations, which may be nonidentical. A simple state-feedback controller is designed such that the response CVNNs can be synchronized with the driving system in a settling time. By using inequality techniques and constructing some new Lyapunov---Krasovskii functionals, several sufficient conditions are derived to ensure the synchronization. It is discovered that the settling time cannot be estimated when the interested CVNNs exhibit infinite-time distributed delays, while it can be explicitly estimated for the CVNNs with bounded delays. The settling time is dependent on both the delays and the initial value of the error system. Finally, numerical simulations demonstrate the effectiveness of the theoretical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call