Abstract

Generalized hill climbing (GHC) algorithms provide a framework for modeling local search algorithms for addressing intractable discrete optimization problems. Current theoretical results are based on the assumption that the goal when addressing such problems is to find a globally optimal solution. However, from a practical point of view, solutions that are close enough to a globally optimal solution (where close enough is measured in terms of the objective function value) for a discrete optimization problem may be acceptable. This paper introduces β-acceptable solutions, where β is a value greater than or equal to the globally optimal objective function value. Moreover, measures for assessing the finite-time performance of GHC algorithms, in terms of identifying β-acceptable solutions, are defined. A variation of simulated annealing (SA), termed static simulated annealing (S2A), is analyzed using these measures. S2A uses a fixed cooling schedule during the algorithm's execution. Though S2A is provably nonconvergent, its finite-time performance can be assessed using the finite-time performance measures defined in terms of identifying β-acceptable solutions. Computational results with a randomly generated instance of the traveling salesman problem are reported to illustrate the results presented. These results show that upper and lower estimates for the number of iterations to reach a β-acceptable solution within a specified number of iterations can be obtained, and that these estimates are most accurate for moderate and high fixed temperature values for the S2A algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.