Abstract

Generalized hill climbing (GHC) algorithms provide a framework for modeling local search algorithms to address intractable discrete optimization problems. This paper introduces a measure for determining the expected number of iterations to visit a predetermined objective function level, given that an inferior objective function level has been reached in a finite number of iterations. A variation of simulated annealing (SA), termed static simulated annealing (S2A), is analyzed using this measure. S2A uses a fixed cooling schedule during the algorithm execution. Though S2A is probably nonconvergent, its finite-time performance can be assessed using the finite-time performance measure defined in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.