Abstract

Generalized hill climbing (GHC) algorithms provide a general local search strategy to address intractable discrete optimization problems. GHC algorithms include as special cases stochastic local search algorithms such as simulated annealing and the noising method, among others. In this paper, a proof of convergence of GHC algorithms is presented, that relaxes the sufficient conditions for the most general convergence proof for stochastic local search algorithms in the literature. Note that classical convergence proofs for stochastic local search algorithms require either that an exponential distribution be used to model the acceptance of candidate solutions along a search trajectory, or that the Markov chain model of the algorithm must be reversible. The proof in this paper removes these limitations, by introducing a new path concept between global and local optima. Convergence is based on the asymptotic behavior of path probabilities between local and global optima. Examples are given to illustrate the convergence conditions. Implications of this result are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.