Abstract

In this paper, the Finite Time Lyapunov Exponent (FTLE) approach is used to analyze and optimize chaotic mixing in an active microchannel and a static mixer. The characteristics of FTLE related to chaotic mixing are discussed. By comparing the similarity of Poincare´ mapping and FTLE contour, it is shown that FTLE can be used to evaluate the chaotic mixing of liquid in the micromixer qualitatively and quantitatively. The minimum channel length needed for full mixing in the mixers can be estimated by the mean FTLE. The results are consistent with CFD simulations directly solving the Navier-Stokes equations coupled with the diffusion equation. More than 3 orders of CPU time can be saved by using FTLE compared with the classical infinite time Lyapunov exponent approach. Moreover, the FTLE is used to optimize the design and operation of the chaotic micromixers to improve the mixing efficiency for the first time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.