Abstract

• Lagrangian coherent structures are computed from 3D particle tracking measurements. • LCSs characterise the hidden complex topology of turbulent flow in a stirred vessel. • Results show that LCSs are related to mixer configuration and macroscale mixing. In mechanically agitated vessels, bulk flow circulation which plays a leading role in macroscale mixing is controlled by hidden Lagrangian coherent structures (LCSs). We use a numerical finite-time Lyapunov exponent (FTLE) approach, for the first time, to resolve such LCSs. Experimental 3D Lagrangian trajectories obtained from a unique positron emission particle tracking (PEPT) technique are used to drive the FTLE model. By computing forward and backward FTLE fields and extracting repelling and attracting FTLE ridges in various azimuthal planes of the flow, a highly complex flow topology is unravelled which varies significantly with azimuthal position. We demonstrate how LCSs organise and quantify the chaotic behaviour of fluid particle paths that underpin mixing through the exchange of fluid between zones of different kinematics. This new Lagrangian approach driven by unique PEPT data is able to unfold some of the complexities of turbulent flow that are beyond the capability of traditional methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.