Abstract
In this paper, the problem of event-triggered non-fragile state estimator design for discrete-time delayed neural networks (DNNs) is investigated over finite-time span. In consideration of the changes of environment and high sensitivity, external disturbances and/or parameter uncertainties might be involved in estimator parameters of the concerned DNNs. Therefore, it is one of our main objectives to design a non-fragile state estimator subject to the norm bounded gain variation. The sensor nonlinearity is supposed to occur in a random way. In the meanwhile, the event-triggered scheme and energy constraints are adopted in state estimator design for the purpose of energy and resource saving. By using the Lyapunov stability theory and some analytical techniques, sufficient conditions are established to guarantee that the estimation error system is finite-time bounded and meet a prescribed mixed H∞ and passivity performance constraint. Furthermore, the estimator gains are obtained via solving a set of linear matrix inequalities (LMIs). Finally, two numerical examples are exploited to demonstrate the effectiveness of the developed technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.