Abstract

This paper investigates the issue of finite-time state estimation for coupled Markovian neural networks subject to sensor nonlinearities, where the Markov chain with partially unknown transition probabilities is considered. A Luenberger-type state estimator is proposed based on incomplete measurements, and the estimation error system is derived by using the Kronecker product. By using the Lyapunov method, sufficient conditions are established, which guarantee that the estimation error system is stochastically finite-time bounded and stochastically finite-time stable, respectively. Then, the estimator gains are obtained via solving a set of coupled linear matrix inequalities. Finally, a numerical example is given to illustrate the effectiveness of the proposed new design method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.