Abstract
Abstract This article investigates the issue of finite-time state estimation in coupled neural networks under random mixed cyberattacks, in which the Markov process is used to model the mixed cyberattacks. To optimize the utilization of channel resources, a decentralized event-triggered mechanism is adopted during the information transmission. By establishing the augmentation system and constructing the Lyapunov function, sufficient conditions are obtained for the system to be finite-time bounded and satisfy the $H_{\infty}$ performance index. Then, under these conditions, a suitable state estimator gain is obtained. Finally, the feasibility of the method is verified by a given illustrative example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.