Abstract

This paper proposes a new nonlinear guidance algorithm applicable for asteroid both hovering and landing. With the new guidance, a spacecraft achieves its target position and velocity in finite-time without the requirement of reference trajectories. The global stability is proven for the controlled system. A parametric analysis is conducted to illustrate the parameters’ effects on the guidance algorithm. Simulations of straight landing, hovering to hovering and landing with a prior hovering phase of the highly irregular asteroid 2063 Bacchus are presented and the effectiveness of the proposed method is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.