Abstract

The problem of attitude synchronization for a group of rigid spacecraft is investigated in this chapter under the general directed communication topology. Combining the strategies of finite-time control, fast terminal sliding mode (FTSM) control, and adaptive control, a novel decentralized finite-time control law is proposed in the presence of inertia uncertainties and environmental disturbances. The new control scheme ensures that each spacecraft can attain the desired time-varying attitude and angular velocity in finite time while maintaining attitude synchronization with other spacecraft in the formation. The feasibility of the control algorithm is investigated by an illustrative simulation example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.