Abstract
This paper deals with finite-time consensus problems for multiagent systems that are subject to hybrid cooperative and antagonistic interactions. Two consensus protocols are constructed by employing the nearest neighbor rule. It is shown that under the presented protocols, the states of all agents can be guaranteed to reach an agreement in a finite time regarding consensus values that are the same in modulus but may not be the same in sign. In particular, the second protocol can enable all agents to reach a finite-time consensus with a settling time that is not dependent upon the initial states of agents. Simulation results are given to demonstrate the effectiveness and finite-time convergence of the proposed consensus protocols.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.