Abstract
This paper proposes a novel adaptive finite-time controller for a quadrotor unmanned aerial vehicle (UAV) model with stochastic perturbations and parameter-unknown terms, under the constraints of a state-constrained system. The controller is designed based on full-state quantization, where the error system is defined to be a function of the quantized error signal. An adaptive method is employed to address the quadrotor UAV system model with nonlinear terms and unknown perturbations. The controller utilizes Barrier Lyapunov function (BLF) bounds with adaptive effective time performance to ensure full-state constraint of the system. The stability of the system is proven using Lyapunov’s stability theorem. The effectiveness of the designed full-state constrained controller for quadrotor UAV based on full-state quantization is verified through a physical experimental simulation platform.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have