Abstract
A quantum system of N Coulomb charges confined within a harmonic trap is considered over a wide range of densities and temperatures. A recently described construction of an equivalent classical system is applied in order to exploit the rather complete classical description of harmonic confinement via liquid-state theory. Here, the effects of quantum mechanics on that representation are described with attention focused on the origin and nature of shell structure. The analysis extends from the classical strong Coulomb coupling conditions of dusty plasmas to the opposite limit of low temperatures and large densities characteristic of "warm, dense matter."
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.