Abstract

We theoretically study finite temperature properties of interacting fermion systems under geometrical frustration in the charge degree of freedom. Physical quantities such as charge structure factors, the specific heat, and the entropy, of the two-dimensional model of interacting spinless fermions on an anisotropic triangular lattice are numerically calculated using the thermal pure quantum state. By considering the Coulomb interactions up to the next-nearest-neighbor bonds, we elucidate that in the highly frustrated region where a long-period stripe-type charge order (CO) is the ground state, fluctuations of different stripe-type CO patterns become large at finite temperatures. When we further introduce $1/r$-type long-range Coulomb interactions, the ground state unexpectedly recovers the non-stripe-type 3-fold CO pattern characteristic of triangular lattice models with short-range interactions. Our results imply that the BEDT-TTF-based organic conductors exhibiting glass-like behavior locates in the region of the intermediate strength of long-range interactions, where both the stripe- and non-stripe-type CO fluctuations are prominent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call