Abstract
The magnetic structure of polymorphic Cr-Co-Ni medium entropy alloys is investigated as a function of temperature and chemical composition by ab initio calculations. Besides the thermal lattice expansion, the longitudinal spin fluctuations (LSFs) are accounted for in determining the magnetic state at finite temperature. We show that sizable local magnetic moments persist on all alloy components in the paramagnetic state for both face-centered cubic and hexagonal close-packed structures, and each alloy species exhibits particular temperature and concentration dependencies. The crucial role of LSFs for the finite temperature magnetic state and its impact on the temperature dependent elastic parameters are demonstrated.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have