Abstract

We study the deviations from the limit distributions in extreme value statistics arising due to the finite size (FS) of data sets. A renormalization method is introduced for the case of independent, identically distributed (iid) variables, showing that the iid universality classes are subdivided according to the exponent of the FS convergence, which determines the leading order FS shape correction function as well. It is found that, for the correlated systems of subcritical percolation and 1/f;(alpha) stationary (alpha<1) noise, the iid shape correction compares favorably to simulations. Furthermore, for the strongly correlated regime (alpha>1) of 1/f;(alpha) noise, the shape correction is obtained in terms of the limit distribution itself.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.